Chang Hee Kwon

Division of Cardiology, Department of Internal Medicine

Seong-Hyop Kim
Department of Anesthesiology and Pain Medicine

Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea

Korean J Anesthesiol 2017 April 70(2): 120-126

นพ.เฉลิมเกียรติ ตรีสุทธาชีพ

วิสัญญี่แพทย์ โรงพยาบาลกำแพงเพชร

- Intraoperative arrhythmia is clinically important
- associated with significant hemodynamic instability
- The action potential of the myocardium is composed of five phases

Fig. 1. Electrocardiograph (ECG) and cardiac action potential of the ventricle.

- The mechanism of arrhythmia is roughly divided into three categories
 - ▶ 1) increased automaticity due to reduced threshold of the action potential or increased slope of phase 4 depolarization
 - ▶ 2) triggered activity due to afterdepolarization reaching the threshold of the action potential
 - > 3) circus movement or re-entry.

- the goals of treatment are
 - prevention of blood clots
 - control of the heart rate (HR)
 - correction of the condition that caused the arrhythmia
 - reduction of other risk factors for heart disease and stroke.

Table 1. Anti-arrhythmic Agents

Class	Basic mechanism	Comments	Drugs	Uses
I	Sodium-channel blockade	Reduce phase 0 slope and peak of action potential		
IA	Moderate	Moderate reduction in phase 0 slope; increase action potential duration; increase effective refractory period.	Quinidine, procainamide, disopyramide	Ventricular arrhythmias, atrial fibrillation
IB	Weak	Small reduction in phase 0 slope; reduce action potential duration; decrease effective refractory period.	Lidocaine, tocainide, mexiletine	Ventricular arrhythmias
IC	Strong	Pronounced reduction in phase 0 slope; no effect on action potential duration or effective refractory period.	Flecainide, propafenone	Paroxysmal atrial fibrillation
II	Beta-blockade	Block sympathetic activity; reduce rate and conduction	Acebutolol, atenolol, bisoprolol, esmolol, metoprolol, nadolol, propranolol, carvedilol, labetalol	
III	Potassium-channel blockade	Delay repolarization (phase 3) and thereby increase action potential duration and effective refractory period	Sotalol, dofetilide, ibutilide, bretylium, amidodarone	Ventricular arrhythmias, atrial fibrillation
IV	Calcium-channel blockade	Block L-type calcium-channels; most effective at sinoatrial and atrioventricular nodes; reduce rate and conduction	Amlodipine, felodipine, isradipine, nicardipine, nifedine, diltiazem, verapamil	

Causes of Intraoperative Arrhythmia

divided into three groups: patient, surgical procedure, and anesthesia.

endotracheal intubation, which accompanies hemodynamic disturbance by autonomic reflexes.

Anesthetic Agents and Arrhythmia

- Drug-induced prolonged ventricular repolarization is associated with torsade de pointes and sudden cardiac arrest
- ▶ All of the inhaled anesthetic agents prolong QTc and QTd
- Propofol does not significantly affect QTc
- Opioids have no effects on QTc, but a high dose of sufentanil may produce QT interval prolongation
- Succinylcholine significantly prolongs the QT interval and QTc, particularly with thiopental

Anesthetic Agents and Arrhythmia

- most non-depolarizing neuromuscular blockers have not been associated with prolongation
- reverse neuromuscular blockade causes transient but significant prolongation of QTc
- sugammadex is relatively safe
- Interscalene brachial plexus block with ropivacaine or bupivacaine do not produce any change in QT interval or QTc

Identification of Intraoperative Arrhythmia and Management

- the anesthesiologist should be aware of the following
 - ▶ 1) What is HR?
 - ▶ 2) Is the rhythm regular or irregular?
 - ▶ 3) Is one P present for each QRS?
 - ▶ 4) Is the QRS normal?
 - ▶ 5) Is the rhythm associated with hemodynamic instability?
 - ▶ 6) Does the rhythm require treatment?

Sinus bradycardia

- sinus bradycardia is defined as HR < 60 beats/min</p>
- ► HR < 40 beats/min may be poorly tolerated in healthy patients,
- ▶ Intravenous atropine of 0.5 mg is used as first-line therapy
- repeated every 3 to 5 min up to a total of 3 mg.
- ► The most common cause is autonomic disturbance including vasovagal stimulation.
- Hypoxia, hypothermia, endotracheal suctioning, and increased intracranial pressure

Sinus tachycardia

- sinus tachycardia is defined as HR > 100 beats/ min at resting state in adults.
- include pain, fever, and hypercarbia.
- ► The most common causes for sinus tachycardia such as light planes of anaesthesia, lack of adequate analgesia, dehydration or wearing off of muscle relaxation

AV block

- First-degree AV block does not require treatment.
- In second-degree AV block, pacing may be required if bradycardia is severe or causes hemodynamic instability.
- Third-degree AV block is characterized by P waves that are discordant with QRS waves.
- Pacing is usually required because escape junctional or ventricular rhythm is usually very slow at < 40 beats/min.</p>

Paroxysmal supraventricular tachycardia (PSVT)

- PSVT has a regular rhythm, and a ratio of P to QRS of 1:1 with normal QRS
- ► HRs of 130-270 beats/min.
- ► The P wave may often be hidden
- intravenous adenosine (6 mg) was shown to rapidly slow AV nodal function.
- ▶ Up to 80% of atrial tachycardias may be terminated by adenosine.
- Vagal manoeuvres

VALSALVA MANOEUVRE

- ► The Valsalva is generally divided into four separate phases:
 - ▶ Phase 1, onset of straining and the beginning of an increase in intrathoracic pressure 30-40 mmHg with glottic closure
 - Phase 2, persistent straining and maintenance of the increased intrathoracic pressure
 - Phase 3, release of breath-holding and glottic pressure with a sudden drop in the intrathoracic pressure
 - ▶ Phase 4, sudden increase in cardiac output and aortic pressure.

CAROTID SINUS MASSAGE

- CSM is performed by applying a steady pressure over right or left carotid sinus for 5-10 s.
- Hence, one has to rule out the presence of carotid bruit clinically before applying CSM.

Atrial fibrillation

- Atrial fibrillation has an irregularly irregular rhythm, and normal QRS
- HRs of 350-500 atrial beats/min and 60-170 ventricular beats/min.
- The P wave is absent
- The significance of atrial fibrillation is that the loss of atrial kick
- associated with reduction of left ventricular filling and stroke volume.
- if atrial fibrillation is present for longer than 48 h
- increase the risk of thromboembolism.

Ventricular tachycardia (VT)

- ▶ If three or more sequential PVCs are present, it is defined as VT.
- > VT has a regular rhythm at HRs of 100-200 beats/min.
- The ratio of P and QRS has no fixed relationship
- VT is a life-threatening state and needs emergent treatment.
- Amiodarone 150 mg for longer than 10 min is used for a loading dose.
- ▶ 1 mg/min for 6 h and 0.5 mg/min for 18 h is followed by dose reduction of administration by the oral route.
- Synchronized cardioversion is applied for hemodynamic instability

ventricular fibrillation (VF)

- ▶ VF has an irregular and grossly disorganized HR
- ▶ The QRS is absent.
- It means that no effective cardiac contraction with output exists.
- Immediate cardiopulmonary resuscitation is required.
- ▶ A non-synchronized defibrillation with 200-360 J is used.
- Biphasic shock reduces the required energy level and increases the efficacy of defibrillation.

Torsade de pointes

- Torsade de pointes is usually invoked in the situation of prolonged QT interval
- Many anesthetic agents may cause mild prolongation of the QT interval
- If the patient is hemodynamically unstable, defibrillation should be delivered promptly.
- first-line therapy is administration of magnesium sulfate 2 g as a slow intravenous bolus.

Artifacts

- misinterpret ECGs as indicating atrial fibrillation or VF
- check the patient's vital signs, particularly arterial pulse or arterial blood pressure monitoring
- correct the potential causes that can induce artifacts.

The End

Thank you for your attention.